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The forced Korteweg-de Vries equation is now established as the canonical equation 
to describe resonant, or critical, flow over topography. However, when the fluid is 
uniformly and weakly stratified, this equation degenerates in that the quadratic 
nonlinear term is absent. This anomalous, but important, case requires an alternative 
theory which is the purpose of this paper. We derive a new evolution equation to 
describe this case which, while having some similarities to the forced Korteweg-de 
Vries equation, contains two important differences. First, a topography of amplitude 
a now produces a finite-amplitude response, whereas in the canonical forced 
Korteweg-de Vries equation, the response scales with at. Secondly, the maximum 
amplitude the fluid flow response can achieve is limited by wave breaking, whose 
onset is characterized by an incipient flow reversal. Various numerical solutions of 
the new evolution equation are presented spanning a parameter space defined by a 
resonance detuning parameter, the topographic amplitude and a parameter 
measuring the strength of the stratification. 

1. Introduction 

(fKdV), 
Recently it has been established that the forced Korteweg-de Vries equation 

(1 .1)  
1 

c?a 
--(A,+ dA,) +,uAA, +AA,,, + yf, = 0, 

is the canonical equation to describe resocant, or critical, flow over topography in a 
variety of physical situations (see, for instance, Akylas 1984; Cole 1985; Wu 1987; 
Lee et al. 1989 for free-surface flow over an obstacle; Grimshaw & Smyth 1986; 
Melville & Helfrich 1987 for flow of a stratified fluid over an obstacle ; Grimshaw 1990 
for flow of a rotating fluid past an obstacle ; Grimshaw 1987 ; Mitsudera & Grimshaw 
1990 for flow of a coastal current past a longshore topographic feature). The 
situations which lead to (1.1) arise when the fluid provides a one-dimensional 
waveguide and the oncoming flow encounters an obstacle placed transverse to the 
flow, with the upstream flow speed being close to critical in the sense that the flow 
speed is close to the linear long-wave phase speed of some wave mode. More 
specifically, abl(X,7) is the amplitude of the dominant, resonant mode, c, is the 
linear long-wave phase speed of this mode, aid is the difference between the upstream 
speed V and c, S P  that d 3 0 defines supercritical or subcritical flow respectively, 
a f ( X )  represents the topography, and ,u, h and y are coefficients determined by the 
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FIGURE 1. A typical numerical solution of the fKdV equation (1.1)  with c,  = 1, A = 0 ,  p = 6, 
h = 1 and the forcing given by (4.4) withf, = 0.1, X ,  = 85 and 7 = 0.3. 

particular resonant wave mode being considered ; X = EX is a scaled spatial variable 
along the waveguide, and 7 = aid is a scaled time variable. Here a and E are small 
parameters where a measures the amplitude of the topography, and E measures the 
effects of linear dispersion. To obtain the fKdV equation (1.1) the usual KdV-balance 
a; = e2 is used. Thus (1 .1)  describes a balance between time evolution, resonant 
detuning, nonlinearity, wave dispersion and topographic forcing. Note that a t  
resonance a forcing which scales with a produces a response which scales with a;. 

Grimshaw & Smyth (1986) (hereinafter referred to as GS) give a comprehensive 
account of the solutions of ( l . l ) ,  obtained numerically and analysed using a 
combination of modulation theory and hydraulic concepts. The solutions depend 
mainly on three parameters which are A ,  the detuning parameter, and two other 
parameters describing the amplitude and width of the forcing term. A typical 
solution at  exact resonance ( A  = 0) is shown in figure 1. It is characterized by an 
upstream wavetrain of solitary-like waves, a stationary depression in the lee of the 
obstacle and a downstream modulated wavetrain. These features have been seen in 
experiments, most noticeably for free-surface flow over an obstacle (e.g. Lee et at. 
1989), and for two-layer stratified flow over an obstacle (e.g. Baines 1984 ; Zhu 1986 ; 
Melville & Helfrich 1987). 

Turning now to the specific case of the flow of a continuously stratified fluid over 
an obstacle, there have been a number of observations of finite-amplitude long waves 
propagating upstream (e.g. Wei, Kao & Pao 1975; Baines 1977, 1979; Castro & 
Snyder 1988; Castro, Snyder & Baines 1990), in qualitative agreement with the 
predictions of the fKdV equation (1 .1) .  Similar features have been seen in some 
numerical experiments (e.g. Hanazaki 1989). Often, however, these laboratory and 
numerical experiments, are conducted for fluids with uniform stratification in the 
Boussinesq approximation (defined here by requiring the parameter /3 (2.1) to be 
small). In this situation the nonlinear coefficient p in (1.1) vanishes, indicating that 
the scaling which leads to (1 .1)  is inappropriate and that the canonical equation ( 1 . 1 )  
needs to be altered to describe this situation. Obtaining the appropriate evolution 
equation for this anomalous, but important case, is the purpose of this paper. 

When the coefficient y vanishes due to a special conjunction of parameters, as 
occurs, for instance, for a two-layer fluid when both the layer depths and densities 
are nearly equal, then the remedy is to add a cubic nonlinearity to (1.1) in addition 
to the small quadratic nonlinearity, thus obtaining a forced modified Korteweg-de 
Vries equation (e.g. Melville & Helfrich 1987). Here, however, when the coefficient y 
vanishes because the fluid is uniformly stratified and the Boussinesq limit is 
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simultaneously applied, a more drastic remedy is needed. Indeed, for the case to be 
considered in this paper, the leading-order term in the resonant solution is the 
product of the amplitude A with the resonant mode, and is an exact solution of the 
nonlinear, steady, unforced equations. This circumstance is well known in the 
context of the use of Long's equation to study steady flow over topography, when for 
a fluid of uniform stratification in the Boussinesq approximation the nonlinear terms 
vanish identically (see Long 1953; Yih 1960; or the Appendix). It now follows that 
in the evolution equation for this case there are no nonlinear terms of the type seen 
in ( l . l ) ,  either quadratic, cubic or any higher order. Instead, the nonlinearity is 
associated with the time evolution and forcing terms, although we note that if p is 
small but not precisely zero, then some traditional nonlinear terms may be present 
as well. 

It follows from this discussion that, if we retain the small parameter a as a measure 
of the forcing amplitude due to the topography, then the response is of finite 
amplitude and scales with unity. This should be contrasted with the theory of GS 
which leads to  (1.1) where the response amplitude scales with a;. Indeed, this 
obscrvation is perhaps one of the most important conclusions to be drawn from the 
analysis of this paper. Since here the nonlinearity scales with unity, the evolution 
equation is determined by a balance between time evolution, resonant detuning, 
wavc dispersion, topographic forcing and perhaps also a parameter measuring the 
cffcct of the Boussinesq approximation. We can anticipate that the amplitude of the 
dominant resonant mode evolves on a timescale of 01-l relative to  the long-wave 
timcscalc, e-', where E again measures wave dispersion, and hence the appropriate 
time variablc is 7 = ad. Dispersive effects are proportional to s2 and we shall adopt 
the usual KdV balance that a = e2. The Boussinesq parameter /3 is also assumed to  
scale with a. With this scaling we shall derive the required evolution equation (3.25) 
in $3, and it will be seen that while it belongs to the fKdV family, there are some 
significant differences from (1.1). I n  $2 we shall formulate the equations of motion, 
and give a brief discussion of the linear long-wave theory to provide a background 
for the subsequent analysis. I n  $4 we present numerical solutions of the evolution 
equation (3.26) and compare them with the corresponding solutions of (1.1) described 
in GS (see figure 1) .  In  $5 we summarize our results. Finally, in the Appendix we 
reconsider the nonlinear, steady equations with the aim of presenting an alternative 
view of how the present anomalous case arises. 

2. Formulation 
We consider the two-dimensional flow of an inviscid, incompressible fluid. 

Throughout, we shall use non-dimensional variables based on a lengthscale h,, a 
typical vertical dimension of the channel, a timescale N;' where Nl is typical of the 
buoyancy frequency, and a pressure p1 gh, where p1 is a typical value of the density. 
These equations define the Boussinesq parameter 

which we shall assume is small. We shall suppose that the basic state consists of a 
constant horizontal velocity V (  > 0) ,  a density po(z) and a pressure po(z)  where 
pOz = -po. The buoyancy frequency N ( z )  is dcfined by 

/+ON2 = -Po; 
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FIQURE 2. The coordinate diagram. 

We find it convenient to introduce the vertical particle displacement 5, so that the 
density is given by po(z-y).  Then the equations of motion are 

u, + w, = 0, ( 2 . 3 ~ )  

where 

d5 --w = 0, 
dt 

d a  a a  
= -+(V+u)-+w--. dt at ax aZ 

- 

(2.3b) 

( 2 . 3 ~ )  

(2.3d) 

(2.3e) 

Here u, w are the velocity components relative to the basic flow, fip is the dynamic 
pressure and x,z are Eulerian coordinates defining the current position of a fluid 
particle ; in particular, the vertical particle displacement 5 is a function of the current 
position. 

The bottom topography is given by (see figure 2 )  

z = .f(X), ( 2 . 4 ~ )  

where x = EX. (2.4b) 

Here u is a small parameter measuring the amplitude of the topography, and a is a 
second small parameter such that 6-l measures the horizontal lengthscale of the 
topography. We further assume that the topography is localized so that f --f 0 as 
1x1 + CO. The bottom boundary condition is then 

5 = uf at z = af. (2.5) 

5 = 0  a t z = h .  (2 .6)  

If the upper boundary is rigid, then the top boundary condition is 

However, if the upper boundary is free with a vertical displacement 7, then the top 
boundary condition is 

< = 7  a t z = h + v ,  ( 2 . 7 ~ )  

and /3p = ~ " p o ( z )  dz a t  z = h+ 7. (2.7b) 
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For initial conditions we shall suppose that all perturbation variables are zero a t  
t = 0. This corresponds, in a frame of reference moving with the basic velocity V ,  to 
impulsively moving the obstacle with a constant speed - V for t > 0, and represents 
a typical laboratory experiment. Non-impulsive initial conditions were considered in 
GS but generally make no difference to the asymptotic state for large times. 

To simplify the equations we next introduce the streamfunction $ where 

u=$z,  w=-lcTx, (2.8) 
so that ( 2 . 3 ~ )  is identically satisfied. Eliminating the pressure p from (2.3b, c )  then 
gives the vorticity equation 

(2.10) dC -+$, = 0. 
dt 

Also (2.3d) becomes 

Equations (2.9) and (2.10) thus form two coupled equations for $ and C. To complete 
the specification of the problem we suppose that the stratification is nearly uniform, 
and put 

W ( 2 )  = N : + p M ( z ) ,  (2.11) 

where we recall that  p is a small parameter. 
To describe the linear long-wave approximation for the case of uniform 

stratification we put 

whereX = ex (see (2.4b)) and 
and (2.10) reduce to  

(2.12) 

T = et. Then in the joint limit a, e , P + O ,  equations (2.9) 

$ = T ,  z )  + . . . , 
5 = aCo(X, T ,  z )  + . . . , 

(2.13 a )  

(2.13b) 

while the boundary conditions (2.5) and (2.6) (or (2.7a, b ) )  reduce to 

c0=f  a t z = O ,  

5, = O  a t  z = h. 
( 2 . 1 4 ~ )  
(2.14b) 

Note that the limit /3+ 0 removes the distinction between the case of a rigid, or free, 
upper boundary. 

The solution for Co (or equivalently $ o )  is most readily obtained by seeking a 
decomposition into linear long-wave modes. The procedure and result in the general 
case is described in GS, and the outcome is not changed here, so we shall just give an 
outline. The linear long-wave modes urn(%),  with phase speeds c ,  are here given by 

Then we let 

( 2 . 1 5 ~ )  
(2.15b) 

(2.16) 
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and find that 
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(2.17) 

With zero initial conditions the solution is (see GS, after correcting some minor errors 
there) 

(2.18) 

The solution consists of three parts, a steady response over the obstacle, and two 
waves which propagate at speeds f c, relative to the basic velocity V.  If V > c, both 
these waves are found downstream, and the flow is supercritical for this mode, but 
if V < c, one mode is found upstream and one downstream, and the flow is subcritical 
for this mode. If V = c,, the flow is critical, or resonan,t, with respect to this mode, 
the solution (2.18) fails and must be replaced by 

@nAm = $Vfx(X)  T+2(X-2VY’)+S(X). (2.19) 

The first term is secular as T+ co and indicates the necessity for a different theory 
a t  resonance. 

Before proceeding to examine the resonant theory in the next section, it is of 
interest to extract the steady part of the solution in (2.18) and then evaluate the 
corresponding complete steady component from (2.16). We find that 

(2.20a) 

where K = No h/nV. (2.20 b )  

Of course this steady solution can bc readily constructed directly from (2.13a, b ) .  It 
fails when K is an integer, which of course is just the resonance condition. In the 
Appendix we show that this method of identifying a resonance from the steady 
solution can be generalized to non-uniform stratifications. 

3. Derivation of the evolution equation 

and put 
We now suppose that the oncoming flow is resonant with respect to  the nth mode 

V = c,+ad, (3.1) 

where A is a detuning parameter of order unity. As discussed in the introductory 
section, we anticipate that the amplitude of the dominant resonant mode will evolve 
on a timescale of 01-l relative to the long-wave time variable T = ~ t ,  and hence we 
introduce the slow time variable 

7 = aT = ad. (3.2) 

Dispersive effects are proportional to .s2, and we adopt the customary optimal 
balance a = 2. Finally, we assume that the Boussinesq parameter p also scales with 
a, and we put 

p = cla, (3.3) 
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are functions of where u is a parameter of order unity. Then, assuming that $ and 
X, 7 and z, equations (2.9) and (2.10) become, after using (2.3e), (2.8) and (2.11), 

where 

J(a,b) = axbz-a,bx, 
4 = $22 + E2$-XX, 

(3.44 

(3 .44  
(3.4e) 

D4 d d * = -- D? U W -  6) 6x + uN2(z-  5) [ €“x dT (@XI - ( 1  - 5,) dT ($4, (3.4f) 

d a D 
D? 

and dT = cn E+ J(  * , $) + a-. (3.49) 

The boundary conditions are (2.5) and (2.6), or (2.7a, b),  which we repeat here for 
convenience 

and = e{uaH(l-~,)+0(u2a2)} at z = h, (3.5b) 

Here e = 0 if the upper boundary is rigid, but e = 1 if this boundary is free. In  the 
latter case we have used (2.3b) to simplify the boundary condition. 

f =  af at z = af, (3 .54  

where H x  = { - c n @ z x - J ( $ - , , $ / ) } + O ( a ) .  (3.54 

To assist in the integration of (3.4a, b) we introduce the new variable 

$4 = $ + c n z  (3.6) 
and we note that this differs from the total streamfunction ($+ Vz) only by a term 
of O(a) .  Then (3.4a, b) become 

( 3 . 7 ~ )  

(3.7b) 

Next we adopt a device used by Warn (1983) (see also Yi & Warn 1987; Grimshaw 
& Yi 1990) which replaces the vertical coordinate z with $4. This is valid provided that 

$4, = $,+c, * 0, (3.8) 
which is equivalent to requiring that the total horizontal velocity does not vanish, 
or that the perturbed horizontal velocity is never large enough to  cause a flow 
reversal. We shall see later that the condition (3.8) imposes a restriction on the 
maximum vertical displacement permitted by this solution procedure. Replacing z 
with $4, (3.7~2, b) become 

(3 .94  4, (& [ 4 + p $I)# -A? (6 + t)x + d = 0, 

# J 2 ( & [ 5 + 3 ) , + a j 5  D6 = 0, (3.9b) 
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where the notation (a/aX),  denotes the derivative with respect to X keeping q3 
constant. Thus (3.9b) implies that 

(3.10) 

Here, upon integration, an arbitrary function of q3 should appear on the right-hand 
side, but considering the upstream limit X + - 00, we see that this must be zero in the 
present circumstances. Similarly, on substituting (3.10) into (3.9a), integrating, and 
using (3.4e) with a = e2 we obtain 

( 3 . 1 1 ~ )  

where 

1 D5 a}) dx’. (3.11b) 
G = $xx+r -02 ( i ( F + N : q r ’  ax -m (--) 9zD7 +constant +-constant 

Next we expand 5, $ as a power series in a,  

@ = $,(X,  7 ,  z )  + a$l(X, 7 ,  z )  + . . . . (3.12 b )  

Substitution into (3.10) and ( 3 . 1 1 ~ ~ )  shows that, as discussed in the introductory 
section, Co and $,, satisfy linear equations though there is no restriction to 
infinitesimal amplitudes. Using the boundary conditions (3.5 a, b)  to leading order, 
and recalling (2.15b), we find that 

where w(z) = sin (nm/h). (3.13 b)  

At this state the amplitude A(X,7 )  is undetermined, but consideration of the 
equation for $l will yield the desired evolution equation for this amplitude. Indeed, 
we find from ( 3 . l l a )  that 

@ l Z Z + C : , h + G 0  Ni = 0, (3.14) 

where Go is obtained from (3.11 b)  evaluated to leading order in a. We find that, on 
using (3.4f), (3.6) and (3.13a, b)  

DA 
Go = p (A[-(-)---- N i  2-Awz DA N i a A r ’  -- a 

-m l -Av,  C: l-Aw, D7 c , ~ X  l-Aw, +-constant 

- C, A x ,  W. (3.15) 
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The boundary conditions (3.5a, b )  give 

and 

where 

$ =-  c,f(l-Aw,) at z = 0, 

~l = -c, reHo(l -Aw,) at z = h, 

Ho = c ~ w ~ A - ’ $ ~ A ~ .  

( 3 . 1 6 ~ )  

(3.16b) 

(3 .16~)  

Equation (3.14) together with the boundary conditions (3.16a, b)  form an 
inhomogeneous boundary-value problem, which has a solution if and only if the 
following compatibility condition is satisfied. 

1 Go w dz- [$1 wz]t = 0. (3.17) 

The fact that this condition is necessary follows directly from (3.14) by multiplying 
(3.14) by w, and integrating with respect to z from 0 to h;  after integrating by parts, 
and recalling the definition of w (3.13b), the result (3.17) follows. To show that (3.17) 
is also sufficient requires solving (3.14) by the method of variation of parameters, and 
we shall omit the details. On substituting (3.15) and the boundary conditions 
(3.16a, b )  into (3.17) we obtain an evolution equation for A .  The result is considerably 
simplified if we introduce the variable 

[ = z-Aw(z),  (3.18) 

where we observe from (3.6) and (3.13a), that, to leading order in a,$ = c,[. The 
relation (3.18) defines [ = f ( z , A )  whose inverse is z = % ( [ , A ) ,  and we recall from (3.8) 
that the inverse exists if and only if 

1 -AW, * 0. (3.19) 

This condition in turn will be satisfied if 

IAl < h/nn = Cn/No, (3.20) 

which is the aforementioned restriction on the maximum vertical displacement 
permitted. Next we observe that, from (3.18) 

and 
aZ 1 _ -  
ag - 1 -Aw,(z) * 

( 3 . 2 1 ~ )  

(3.21 b )  

Introducing [ in place of z in the compatibility condition (3.17), and using the 
relations (3.21a, b ) ,  we can then show that the evolution equation takes the form 

Here A’ = A ( X ,  T ) ,  while K ( A ,  A’) and m(A) are given by 
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a2 
( z  - E )  A M ( [ )  dE + w: A2[  1 - ( - l),] - N i  c, 

Here z = z (6 ,A)  and z’ = z(E,A’). Further, integrating the second term in ( 3 . 2 3 ~ )  by 
parts, i t  can be shown that K(A,  A’) is symmetric in A and A’, and given by the 
alternative expression 

Before proceeding in the next section to  describe various numerical solutions of 
(3.22) we record some general properties of (3.22). First i t  can be shown that 

(3.25) 

and hence (3.22) adopts the alternative form 

(3.28) 

Next, we consider the weakly nonlinear limit A + 0 for which it can be shown that 

(3.27) 

Turning now to the nonlinear term gm(A) we first observe that i t  can be omitted in 
the limit cr --f 0, which corresponds to the Boussinesq approximation in which /3 G a 
(see (3.3)). The precise form of m(A) depends onM(z) (see (2.11)), but note that, from 
(3.26), any linear term inA can be absorbed into a redefinition of A ,  and is equivalent 
to a ,&correction to the phase speed c,. I n  analysing m(A) we see from (3.22b) that 
it can be regarded as composed from three contributions, these being due toM(z), the 
inertial effects of the stratification, and the free-surface boundary condition, where 
the last term is identified by the parameter e .  First let M ( z )  = 0 corresponding to 
uniform stratification. Then, in the weakly nonlinear limit A+O, we find that, 
putting e = 0 for simplicity, 

m(A) = I@:A2[i-(-l)n]+O(A4). (3.28) 

Next let M ( z )  = N t z ,  corresponding to  an error of O($),  to the linear stratification 
po(z) = pl(l  - p N i z ) .  Then, again using the weakly nonlinear limit and putting 
e = 0, we find that 

1 1 N 2  K(A,A’)  = h  1 - - 3 ( 3 A 2 - 8 A A ’ + 3 A ’ 2 ) + . . .  . { 4cn 

(3.29) 
N t  h2 m(A) = -A-1J:A2[l-(-i)”]+O(A4). 
4cn 

Note the curious fact that  in both these examples there is no cubic term in A .  
Recalling that linear terms in A can be absorbed into a redefinition of A ,  we see that 
a useful approximation to m(A)  is a single quadratic term, although the sign of this 
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term is sensitive to the details of the stratification. Further, we note that in the 
weakly nonlinear limit (3.26) can be reduced to the fKdV equation ( 1 . 1 )  where 
h = ci/2N;, y = l / n x  and the coefficient p depends on the precise form chosen for 
M ( z ) ,  but is proportional to cr. 

To conclude, we consider the steady travelling wave solutions of (3.26) in the 
absence of the forcing term (i.e. f = 0 ) .  Thus we put A = A(X-wr)  and using (3.25) 
we find that 

~ h ( w - A ) A + a m ( A ) + ~ , h A , ,  = 0. 
c i  

(3.30) 

In general this will have both solitary and periodic wave solutions. For instance, if 
m(A) is a quadratic function of A ,  m(A)  = 3A2 say, then the solitary wave solution 
of (3.30) is 

A = asech2 k(X- wr),  (3.31a) 

where (3.31 b )  

Of course, this is just the well-known KdV solitary wave, and this discussion serves 
to emphasize that the significant new feature of (3.26) resides in the time evolution 
process described by the first term in (3.26). 

4. Solutions of the evolution equation 

choose the nonlinear term m(A) to be quadratic, so that 
The equation to be solved is (3.26), where from the discussion at the end of $3,  we 

m(A)  = 3A2. (4.1) 
Note that any coefficient of this expression can be absorbed into the definition of the 
parameter (+. Next we introduce the scaled variables. 

into (3.26). Omitting the asterisk, and using (4.1) the evolution equation to be solved 
is thus 

(4.3) 
aA’ -‘p K(A,A’)-dX’-AA+3aA2+A,,+f h --m a7 

where we recall from (2.15b) that c, = No h/nx.  Finally we note that there is no loss 
of generality in setting h = 1 ,  since our initial non-dimensionalization was based on 
the channel depth. The kernel K(A,A’)  is defined by (3.23a), or equivalently by 
(3.24). Equation (4.3) contains three intrinsic parameters being the detuning 
parameter A ,  the nonlinearity parameter cr and the mode number n.  In addition there 
are external parameters associated with the forcing function f ( X ) .  To reduce the 
parameter space we set the mode number n = 1 ,  and let the obstacle be a single hump 
given by 

The forcing function is thus characterized by two parameters fo and 7, where fo is the 
forcing amplitude and can take either sign, while 7-l measures the half-width of the 
obstacle. Other single hump forcing terms such as a ‘sech2 ’ profile characterized by 

f = f o  exp ( - 7 2 ( x - x o ) 2 ) .  (4.4) 
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the same two parameters will give similar results. The forcing is centred at  X, which 
is chosen for numerical convenience ; in all the plots shown X, = 85. To complete the 
specification of the problem we impose the initial condition that 

A = O  a t r = O .  (4.5) 

This corresponds to  the laboratory situation in which for times 7 < 0 the obstacle and 
the fluid are a t  rest, but for times r > 0 the obstacle is moved a t  constant speed - V .  
Of course the evolution equation describes this situation from a reference frame 
attached to  the obstacle. Finally we suppose that for all finite times r > 0, A --f 0 as 

Equation (4.3) with the forcing given by (4.4) and with the initial condition (4.5) 
was integrated numerically. The numerical scheme is similar to that used by Yi & 
Warn (1987) and Grimshaw & Yi (1990) for evolution equations of the same type as 
(4.3), and is described in detail in the former paper. Briefly, as i t  stands (4.3) can be 
regarded as a Volterra integral equation of the first kind for the time derivative 
aA/ai-. But since the inversion of a first kind integral equation is ill-posed and hence 
numerically unstable, (4.3) is first differentiated with respect to X to give a Volterra 
integral equation of the second kind for a A / a ~  whose inversion is numerically stable. 
Spatial derivatives are evaluated spectrally over the spatial domain 0 < X < L ,  with 
periodic boundary conditions being applied at  X = 0, L. The forcing centre X,, 
0 < X, < L is chosen to  maximize the time for the waves generated by the obstacle 
to reach the domain boundaries, and effectively A is zero a t  these boundaries until 
this time is reached. 

I n  presenting our numerical results the available parameters are A ,  u, fa and 7. We 
shall generally set q = 0.3, since we find the results are relatively insensitive to q ;  a 
similar situation was found by GS in the numerical solutions of the fKdV equation 
(1.1). This leaves the three parameters A ,  u and fa representing respectively the 
resonance detuning, nonlinearity and the forcing amplitude. Note that although we 
are calling u the nonlinearity parameter, it is also a measure of the stratification since 
the Boussinesq parameter ,8 = ucc (3.3). Further, there are other nonlinear terms in 
the kernel K ( A ,  A’)  and in the total forcing termf( 1 - nnA/h),  and these remain when 
u = 0. In describing our numerical results we shall use as a benchmark the 
corresponding solutions of the fKdV equation (1.1) described by GS, where we note 
that a rescaling analogous to (4.2), allows us to set c, = 1, ,u = 6, h = 1 and y = 1 in 
(1.1). With these values, the weakly nonlinear limit of (4.3) (i.e. f , ,A--fO) is (1.1). It 
is important to note here that in (1.1) A itself can be rescaled to allow the nonlinear 
coefficient ,u to  be chosen arbitrarily, although of course f must also then be rescaled 
by the same factor. Our choice of ,u = 6 for (1.1) corresponds to u = 1 in (4.3). Thus 
in (1.1) there are only two parameters A and fa. However, the corresponding 
nonlinear parameter cr in (4.3) cannot be removed by an analogous rescaling of A 
since the kernel K ( A , A ’ )  and the total forcing term f(1 -nnA/h)  also depend non- 
trivially on A .  

A typical solution to the fKdV equation (1 . l )  is shown in figure 1 for the case of 
positive forcing (fa = 0.1) and exact resonance ( A  = 0). It is characterized by 
solitary-like waves, propagating upstream, a stationary depression in the lee of 
the obstacle and a downstream modulated wavetrain. As A is varied, either 
A > 0 (supercritical flow) or A < 0 (subcritical flow), there is a resonant band 
A -  < A < A + ( A ,  3 0) for which the solution retains the same general features. For 
A < 0, the downstream wavetrain intensifies and propagates more slowly until for 
A < A- a stationary wavetrain develops in the lee of the obstacle; simultaneously 

Ixl+ a. 
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FIGURE 3. (a)  The numerical solution of (4.3) with u = 1 ,  A = 0, andf, = 0.1. Here, and in all the 
plots shown unless stated otherwise, X ,  = 85 and 1 = 0.3. ( b )  The corresponding numerical solution 
of the fKdV equation (1.1). 

the upstream wavetrain develops the character of a modulated wavetrain and for 
A < A -  detaches from the obstacle. On the other hand for A > 0, the downstream 
wavetrain weakens and propagates faster, while the upstream wavetrain slows down, 
until for A > A+ there develops a stationary elevation over the obstacle and a 
compensating downstream wavetrain propagating rapidly away from the obstacle. 
Further details can be found in GS, which also looks a t  the case of negative forcing 

In general, the solutions of (4.3) show the same qualitative features with some 
differences which we describe in detail below. First, however, we must emphasize 
that one of the most important differences is due to the constraint (3.20), which for 
h = 1 and n = 1 becomes 

fo < 0. 

1 IAl < -. 
K 

There is no counterpart to this in the fKdV equation (l . l) ,  which although only valid 
in the weakly nonlinear limit, in itself places no restriction on the magnitude of A .  
In  many cases we find that even for quite small forcing amplitudes Ifol, the amplitude 
of the developing wavetrains grows until the constraint (4.6) is violated a t  some 
critical time T = 7,. The consequence of this is that  the wavetrains do not have time 
to develop fully, and in particular, we find that the upstream wavetrain often fails 
to develop and remains confined to the vicinity of the obstacle. It is appropriate here 
to recall the origin of the constraint (4.6) which is the condition (3.8) preventing a 
flow reversal a t  any point in the flow field. Hence we shall call T, the breaking time 
since it corresponds to the time at which the total horizontal velocity has become 
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FIQURE 4. A contour plot of z-Av(z)  at 7 just less than 7, = 21.6 for the numerical solution of 
(4.3) shown in figure 3(a ) .  The contour intervals are 0.05. 

zero a t  some point in the flow field X = X,, z = z ,  say; since n = 1 it follows from 
(3.13b) and (3.19) that  z ,  = ih. If the wave were allowed to continue for 7 > 7, then 
a situation would develop with heavier fluid overlying lighter fluid leading to  a wave 
profile which is locally gravitationally statically unstable. Presumably this would 
then lead to wave breaking although our present analysis does not allow us to test 
that this would actually be the case. 

In  general 7, increases and the solutions show a greater resemblance to those of the 
fKdV equation (1.1) as either lAl increases, lfol decreases, or lul increases. The reason 
for this is clearly that any of these effects will generally reduce the size of IAl. Next 
we turn to a presentation of a selection of our numerical results, first for u = 1,  then 
for u = - 1, and finally for the important case of very weak stratification when 
u = 0. In  each case we consider a range of values of f o  and A .  

(a )  u = 1 
A typical result is shown in figure 3(a) for exact resonance, A = 0, and f, = 0.1. 

Here we remind the reader that in all the plots displayed, the obstacle is not shown 
but is centred a t  X, = 85, and 7 = 0.3 unless otherwise stated. I n  this case the 
breaking time 7, = 21.6, and the wave which breaks is the solitary-like wave forming 
on the upstream side of the obstacle. A contour plot of the leading term, c,(z-Av(z)), 
for the total streamfunction (I (see (3.6) and ( 3 . 1 3 ~ ) )  is shown in figure 4 for 7 just 
less than 7,. In  order to help interpret the result shown in figure 3(a) ,  we show in 
figure 3 ( 6 )  the corresponding result for the fKdV equation (1 .1)  ; of course, this is just 
the same solution shown in figure 1,  but here for clarity of comparison with figure 
3 ( a )  we only show the solution up to time 7,. Comparing figures 3 ( a )  and 3 (b )  we can 
see the same qualitative features, namely, the development of an upstream solitary- 
like wave, a depression in the lee of the obstacle, and a downstream modulated 
wavetrain. However, there is now the crucial difference that for the evolution 
equation (4.3) the upstream wave breaks at  7 = 7,, whereas for the fKdV equation 
(1 .1)  there is no such constraint, and the wavetrains continue to develop as shown in 
figure 1. Also, a closer quantitative comparison between figure 3(a, b)  a t  identical 
times 7 shows that for the evolution equation (4.3) both the upstream and the 
downstream waves are of a slightly smaller amplitude, and are slightly displaced in 
the downstream direction, while the lee depression is also of a slightly smaller 
magnitude. For cr = 2 , 3  respectively, with the other parameters unchanged, the 
breaking times are 7, = 22.4 and 27 respectively, with a corresponding greater 
development of the wavetrains. On the other hand for u = 1 but with fo increased to  
0.2, the breaking time is r, = 6.1. 

Next we consider the supercritical case when d > 0. Two representative results are 
shown in figure 5(a ,  b)  for A = 0.5, f,, = 0.1 and A = 1.0, f o  = 0.2 respectively. 
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FIGURE 5. The numerical solution of (4.3) with u = 1. (a) A = 0.5, fo = 0.1 ; ( b )  A = 1.0, fo = 0.2. 

Superficially, they appear to  be qualitatively similar with a wave of elevation 
apparently trapped over the obstacle, and a compensating downstream modulated 
wavetrain. However, there is the important difference that for A = 0.5 (figure 5a)  
the wave of elevation is growing slowly and breaks at time 7, = 37.2, whereas for 
A = 1 .O (figure 5 b)  the wave of elevation is stationary and there is no wave breaking ; 
indeed, this case was run out to 7 = 82 with no sign of wave breaking. Comparing 
these with the analogous results of GS for the fKdV equation (1.1) we would call the 
case of figure 5 (a )  supercritical but resonant, and the case of figure 5 ( b )  supercritical 
and non-resonant (see figures 7 and 10 of GS). Our interpretation of figure 5 ( a )  is that  
an upstream solitary-like wave is forming but before it is able to detach from the 
obstacle the breaking time 7, is reached, whereas in figure 5(b )  the solution is non- 
resonant and the waves are too small to break. It is useful here to note that the GS 
estimate for A,,  the upper limit of the resonant band, is A ,  w (12f0)i; for the case of 
figure 5(a )  this gives A ,  w 1.1, and for figure 5 ( b )  A ,  w 1.55. Our interpretation of 
figure 5 (a)  is consistent with these estimates, but for the case of figure 5 (b )  it would 
seem that there is a residual nonlinear effect in that the evolution equation (4.3) has 
become non-resonant for a different value of A+ than the fKdV equation (1.1). 

For the subcritical cases A < 0, three representative results are shown in figure 
6 ( a )  for A = -0.4, fo = 0.1, figure 6 ( b )  for A = -2.5, fo = 0.2 and figure 6(c) for 
A = -3.0, fo = 0.2. The cases shown in figure 6 ( a ,  6 )  are resonant in the terminology 
of GS in that the upstream solitary-like waves are still forming a t  the obstacle, and 
the downstream wavetrain is not stationary (see figure 8 (a)  of GS). On the other hand 
the case shown in figure 6(c) is non-resonant since the upstream wavetrain has 
detached from the obstacle, and there is now a downstream stationary lee-wavetrain 
(see figure 9 of GS). Note that the GS estimate for A _ ,  the lower limit of the resonant 
band is A- x -+(12f0)i, which is A -  w -0.55 for the case of figure 6(a) ,  and 
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FIGURE 6. The numerical solution of (4.3) with u = 1. (a) d = -0.4, fo = 0.1; ( b )  d = -2.5, 
fo = 0.2; (c) A = -3.0, fo = 0.2. 

A- w -0.77 for the cases of figure 6(b3  c). (In fact, GS identify the range -(12f0)i < 
A < -i(l2jo): as a transition band from resonant to fully subcritical, but for sim- 
plicity we shall ignore this complication here). However, again, we see that the most 
significant difference between these results and those of GS is the formation of a 
breaking wave. Indeed comparing the resonant cases of figure 6 ( a ,  b)  with the 
corresponding result of figure 3 ( a )  for A = 0, we can see the same qualitative 
features, although with A < 0 the upstream wave has a smaller amplitude, the lee 
depression is deeper and the downstream waves are larger. Most importantly, 
breaking now occurs in the lee depression and the breaking time 7, is reduced as A 
is decreased from zero, being 7, = 13.2 for A = -0.4 (figure 6 a ) ,  11.4 and 9.9 for 
A = -0.5 and A = -0.7, and 4.4 for A = -2 .5  (figure 66) .  Further, because of this 
wave breaking, the boundary between the resonant case and the non-resonant case 
in the classification scheme of GS is altered here to the criterion that wave breaking 
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FIGURE 7. The numerical solution of (4.3) with (r = 1. (a) A = 0, f,, = -0.1 ; ( b )  A = 0, fo = -0.2 
(here = 2.0 instead of 0.3). 

occurs or does not occur. Finally, comparing the non-resonant case of figure 6 (c) with 
the corresponding result (figure 9) of GS, it is interesting to note that although the 
results are quite similar, here the lee-wavetrain is initially unsteady, and seems to 
propagate slightly towards the obstacle before becoming steady. Also note that the 
O ( f i )  upstream effects predicted by McIntyre (1972) for non-resonant subcritical flow 
are here too small to be discernible. 

Next we consider some representative results for negative forcing (f, < 0), 
confining attention to the case of exact resonance. Of course, negative forcing 
corresponds to flow over a hollow and is of less practical interest than positive 
forcing, but it is nontheless useful to consider i t  briefly here in order to give a more 
complete picture of the solutions of (4.3). With A = 0, two typical results are shown 
in figure 7 (a )  (f, = - 0 . 1 , ~  = 0.3) and 7 ( b )  (fo = -0.2, r ]  = 2.0). At first sight it might 
seem that there are some differences from the corresponding results for the fKdV 
equation (1.1) (see figure 11 of GS), where there are significant upstream and 
downstream wavetrains in addition to the transient disturbance in the forcing 
region. However, the differences are due to the fact that the transient wave in the 
forcing region breaks before the upstream and downstream wavetrains can develop. 
This is most marked in figure 7 (a), where r, = 8.8, and only a very small downstream 
wave can be seen. In figure 7 (b) the effect of dispersion has been increased by putting 
7 = 2.0 instead of 7 = 0.3, with the consequence that r ,  = 15.8 (note that fo is also 
changed from -0.1 to -0.2), and there is more time for a significant downstream 
wavetrain to develop. 
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FIGURE 8. The numerical solution of (4.3) with u = - 1. ( a )  A = 0, fo = -0.1 ; ( b )  A = 0 ,  jo = 0.1. 
Kote that now -A is plotted. 

(b )  a = - 1 

For the fKdV equation (1.1) this case is equivalent to a = 1, since the 
transformation A + - A  and f + - f is equivalent to changing the sign of the nonlinear 
coefficient. However, for the evolution equation (4.3) this transformation is not 
available, and hence a = - 1 is a distinct case from = 1. Nevertheless, in presenting 
our results it is useful to  keep in mind the transformation A + - A  and f + - f ,  so that 
in this subsection our results are plotted for - A .  In  figure 8 (a ,  b)  we show the cases 
A = 0 and f o  = -0.1 and f o  = 0.1 respectively. The case shown in figure 8 ( a )  
corresponds to that shown in figure 3 ( a )  (a = 1, A = 0, f o  = 0.1) and we can see the 
same general features with the important difference that the breaking time has becn 
reduced (from 7, = 21.6 to 7, = 9.2). Similarly, the ease shown in figure 8 ( b )  
corresponds to that shown in figure 7 ( a )  (a = 1, A = 0, f,, = -0.1) and again there 
are the same general features but with a reduction in the breaking time (now 
from 7, = 8.8 to 7, = 7.0). When lAl + 0, but remains small, there is a qualitative 
similarity to  the case A = 0 with generally similar breaking times; thus for A = 0.4 
with f o  = -0.1 or f o  = 0.1 we find that 7, = 10.4 or 12.0 respectively, while for 
A = -0.4 with f o  = -0.1 or f o  = 0.1 we find that r ,  = 13.0 or 6.0 respectively. 
Generally, as (A1 is increased the validity of the comparison with thc corresponding 
case for a = 1 under the transformation A + - A  and f + - f is increased, although 
as for the case A = 0 the corresponding breaking time is generally reduced. 

(c)  a = 0 
This case is important because thc nonlinear tcrms in (4.3) are entirely associated 

either with the time cvolution term or with the forcing term. In  the weakly nonlinear 
limit it reduces to the linear fKdV equation (i.e. (1.1) with p = 0). First, we consider 
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FIGURE 9. The numerical solution of (4.3) with u = 0. (a) A = 0, fo = 0.1 ; ( b )  A = 0, fo = -0.1. 

positive forcing and in figure 9(a) show the case of positive forcing (f, = 0.1) and 
exact resonance (d = 0). There is a qualitative similarity with the corresponding 
result in figure 3 (a )  for u = 1, with the important difference that the breaking time 
has been substantially reduced from 7, = 21.6 to 7, = 9.0, although we note that the 
corresponding breaking time for u = - 1 is 7, = 9.2 (see figure 8a).  Also, breaking 
now occurs in the lee depression rather than for the upstream wave. The case of 
negative forcing (fo = -0.1) is shown in figure 9(b)  and the breaking time is now 
7, = 10.0, which is greater than the breaking times 7, = 8.8 or 7, = 7.0 for the 
corresponding cases of u = 1 (figure 7 a )  or (T = - 1 (figure 8 b )  respectively. 

As A or fo are varied the comparison with thc case u = 1 remains useful, but there 
is generally a reduction in the breaking time. For instance, in figure 10(a) we show 
the case d = -0.4, f, = 0.1 which is subcritical but resonant, and should be 
compared with the corresponding result for u = 1 (figure 6a);  the breaking time has 
been reduced from 7, = 13.2 to 7, = 7.7 and again occurs in the lee depression. For 
d = -0 .7  or -0.9 the breaking time is further reduced to 7, = 7.2 (in both cases). In 
figure lO(b) we show the case d = -2.5, fo = 0.2 which is subcritical and non- 
resonant, and should be compared with figure 6(c) for the corresponding case of 
cr = 1 (see also figure 9 of GS). There is again a stationary lee-wavetrain, and an 
upstream-propagating wavetrain, but there are some quantitative differences 
between the cases u =  0 and u = 1. Most notably, for cr = 0 ,  the lee-wavetrain 
remains unsteady for a considerable time before becoming stationary, and the initial 
propagation towards the obstacle is quite marked. For this case there is no wave 
breaking up to T = 48, although for convenience we only show the results up to 
7 = 28 in figure lO(b). However, for d = - 1.5 and d = -2.0 (with f, = 0.2), wave 
breaking does occur at T = 34.6 and 7 = 37.1 respectively. 

In  figure l l (a ,  b )  we show two supercritical cases, A = 0.5(j0 = 0.1) and d = 
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FIGURE 10. The numerical solution of (4.3) with (T = 0. (a )  d = -0.4, f,, = 0.1 ; 
( b )  d = - 2 . 5 :  f, = 0.2. 

FIGURE 11. The numerical solution of (4.3) with (T = 0. (a )  d = 0.5, f,, = 0.1 ; 
( b )  A = 1.0. f , ,  = 0.2. 
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FIGURE 12. The drag D (4.7) for r = 0. The plots show ?&/nac:. ( a )  A = 0, f, = 0.1; (b )  A = -2.5, 
fo = 0.2; (c) A = 1.0, fo = 0.2. These correspond to figures 9(a ) ,  10(b) and 11 (b )  respectively. 
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1 .O( fo = 0.2) respectively, I n  both cases no wave breaking was observed up to 7 = 48. 
However, we classify the case A = 0.5 (figure 11 a) as resonant, since the downstream 
wavetrain is still connected to the obstacle by a lee depression, while this is not the 
case for A = 1.0 (figure l l b )  which we hence classify as non-resonant. We note, 
however, that  for A = 0.5 and fo = 0.2 wave breaking occurs a t  7, = 5.6 which should 
be contrasted with the case A = 0.5 and fo = 0.1 (figure l l a )  when there is no wave 
breaking. It is useful to note here that the GS estimate for the resonant band A -  < 
A < A+ has A+ x (12f0)i and A -  x -i(12f0)i; with jo = 0.2 this gives A+ x 1.55 and 
A- % -0.77. It seems that the combination of wave breaking and/or the absence of 
a traditional nonlinear term (i.e. r = 0) makes these estimatcs only a qualitative 
guide to the resonant bandwidth. 

Finally, because some experiments (e.g. Castro et al. 1990) measure the obstacle 
drag we give three representative results for the drag aD, which to  leading order in 
a, is here given by 

In figure 12(a) we show a time history of D for d = 0 andf, = 0.1 (see figure 9(a )  for 
the corresponding evolution of A ) .  We see that D increases until breaking occurs, 
owing to the simultaneous growth of the upstream wave and lee depression. I n  figure 
12(b, c) we show D for A = -2.5 and A = 1.0 respectively with fo = 0.2 (see figures 
10(b) and l l ( b )  for the corresponding evolution of A ) .  I n  the subcritical case D 
oscillates as each successive upstream wave is produced, and presumably eventually 
decays to a steady value. Oscillations in wave drag for subcritical flow have been 
observed by Castro et al. (1990), although a direct comparison with the experimental 
results is precluded, inter alia, by the neglect of frictional effects in the present 
theory. I n  the supercritical case, D rises rapidly as the initial downstream wave forms 
a t  the obstacle, but then decays to zero once a steady state is reached over the forcing 
region. 

5. Summary 
In this paper we have shown that the canonical fKdV equation (1.1) for resonant 

flow over topography is replaced by the evolution equation (3.26) (or (4.3) in scaled 
form) in the important special case when the fluid is uniformly and weakly stratified. 
While this new evolution equation has solutions which bear some qualitative 
similarity to those of the fKdV equation there are two important differences. The 
first is that in the present case, for near resonant flow, a topography whose amplitude 
scales with the small parameter a, will produce a response amplitude which scales 
with unity. Secondly, the maximum amplitude which the fluid flow response can 
achieve is limited by wave breaking, whose onset is here defined as an incipient flow 
reversal. 

In  general, the evolution equation (3.26) describes, for resonant (or critical) flow 
over topography, a fluid response which consists of the development of upstream 
solitary-like waves, a lee depression on the immediate downstream side of the 
topography, and a compensating downstream train of modulated waves. Often, 
particularly for a flow which is near an exact linear resonance, this fluid response 
produces a breaking wave either on the upstream side of the topography, or in the 
lee depression. The latter case is more common when the flow is on the subcritical side 
of resonance. However, if wave breaking does not occur, which is typically the case 
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when the flow parameters are such that the system is not near an exact linear 
resonance, then the solutions behave similarly to those of the fKdV equation, and 
indeed the evolution equation (3.26) reduces to an fKdV equation when the wave 
amplitudes become small. Further, the similarity to the fKdV equation is enhanced 
when the conditions of the Boussinesq approximation and uniform stratification are 
slightly relaxed by increasing the absolute value of the parameter in the evolution 
equation (3.26). 

To conclude we have shown that the evolution equation (3.26) replaces the 
canonical fKdV equation (1.1) in the anomalous, but important, case of uniform 
stratification in the Boussinesq approximation. The need for this extension of the 
generic theory is indicated by the fact that the nonlinear coefficient ,u in the fKdV 
equation (1.1) vanishes identically in this special case. Indeed the same anomalous 
situation occurs in the resonant flow of a rotating fluid past an obstacle when the 
oncoming flow is uniform with constant angular velocity (Grimshaw 1990), and in 
that case too the fKdV equation (1.1) is replaced by an evolution equation similar 
to (3.26). Finally, although the present work was originally motivated by the 
experiments of Castro et al. (1990), a direct comparison with these experiments, or 
indeed with the earlier experiments of Baines (1979) or the numerical results of 
Hanazaki (1989), is precluded by the absence of friction in the present theory. We are 
currently examining a modification of the present model equation which incorporates 
frictional effects with the major aim of determining to what extent frictional 
processes can prevent wave breaking. 

Yi Zengxin was supported during this project by ARC grant A48830746. 

Appendix 
Here we shall consider the nonlinear, steady equations with the aim of developing 

an alternative, but equivalent, criterion for resonance. Hence we now put alat = 0 in 
(2.9) and (2.10). Equation (2.10) then becomes 

where $4 = @+ vz. (A 1 b )  

Note that $ differs slightly from the definition (3.6) given in $3. Using the upstream 
condition that 5, $-+ 0 as X+- 00, i t  follows that 

c+; = 0. 

Then (2.9) becomes 

where we recall that q is given by (3.4e). Again using the upstream conditions (A 3) 
can be integrated to give 



626 

The boundary conditions (2.5) and (2.6) become 
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$ = -aVf at z = af, (A 5 4  

and $ = 0  a t z = h .  (A 5b) 

$ = - V q  a t z = h + q ,  (A 6 4  

and $ = ~ V ( E ~ $ $ + $ , " + Z V @ ~ )  at z = h+q. (A 6b) 

If the upper boundary is free, (2.6) is replaced by (2.7a, b)  which become 

Equation (A 4) with the boundary conditions (A 5b) (or (A 5a)  and (A 6a, b) )  forms 
a single, nonlinear equation for $. Of course, this equation is well known (see, for 
instance, Long 1953, or Yih 1960), and is often called Long's equation. It has been 
mainly utilized for the case of uniform stratification in the Boussinesq limit p+O, 
when it reduces to a linear equation. This case is also the focus of this paper, and we 
shall discuss this situation below (see the last paragraph). First, however, we consider 
the general case when N 2 ( z )  is an arbitrary, generally nonlinear function of z,  and p 
is not necessarily a small parameter. 

At  this point we make the long-wave approximation and omit the 2-terms in (A 4) 
(and in (A 6b)), so that the equation to be solved is 

I $.,,+N2 - $ $ B  ---($,"+2v$2) =o.  ( v P 2 v  

The X-dependence of the forcing provided by the obstacle is now purely parametric, 
and (A 7)  is to be solved as a second-order ordinary differential equation in z alone. 
Let @(z ; d ( X ) )  be the solution satisfying the boundary condition (A 5 b) or (A 6a, b)) ; 
as the notation indicates it depends on a single 'constant of integration' d ( X )  which 
depends parametrically on X .  Then to satisfy the remaining boundary condition 
(A 5a)  we require that 

(A 8) 
This condition determines d in terms of af uniquely provided that 

(A 9) 

$Caf(X) ;W)) = -aVf(X). 

$d(af(x) ; d(X)) * O, 
where the notation indicates the derivative with respect to d. The flow is said to be 
critical if (A 9) is violated, so that 

$d(Olf@) ; d(X)) = O. (A 10) 
This definition of criticality is just that introduced by Gill (1977) in a different 
context (see also Pratt & Armi 1987; Grimshaw 1990), and is equivalent to the 
condition that a long wave has become stationary (i.e. it  has a zero phase speed in 
the frame of reference of the obstacle). Here, as in Grimshaw (1990) which considers 
an analogous situation for rotating flows, we shall demonstrate this in the limit 
a+O, and confirm that this concept of criticality is equivalent to that of resonance 
defined in GS. 

Thus let 
v(z ; d ( X ) )  = $d(z; d(X))- (A 11) 

Then, differentiating (A 7) we find that 
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The boundary conditions for v at  criticality are 

v = O  a t z =  af, 

and v = O  a t z = h .  

(A 13a) 

(A 13b) 

If the upper boundary is free, (A 13b) is replaced by a different boundary condition 
obtained by differentiation of (A 6a, b ) ,  but for simplicity we shall not give details. 
In the limit a+O, $ + O ,  and hence (A 12) and (A 13a, b )  become 

(A 14a) 

and v = O  a tz=O,h .  (A 14b) 

Examination of (A 14a, b )  shows that this is identical with the equations defining a 
linear long-wave free mode (see (2.10a-c) of GS), and has a solution if and only if 
V = c,. Hence, criticality as a +. 0 is equivalent to the definition of resonance given by 
GS. Note that relative to the obstacle, the linear long-wave phase speeds are V+c , .  

To conclude, we consider the special case of uniform stratification in the 
Boussinesq limit P + O .  Thus N 2 ( z )  is defined by (2.1 l),  and letting /3+0 in (A 7) we 
obtain 

while the boundary conditions are (A 5a,  b ) ,  whether the boundary is rigid or free. 
The solution which satisfies the boundary condition (A 5 b)  is 

Thus v (A 11)  is given by 

v ( z ; d )  = s inE(h-z)} .  (A 17) 

The parameter d is determined from (A 8) and hence 

d = - aVf/sin @ ( h  - a t ) } .  

Also the condition (A 10) for criticality becomes 

which is also immediately apparent from (A 18). In the limit a+O, this gives V = c,, 
where here c, is given by (2.15b). It is significant here that at resonance, d scales with 
unity as a+O the reason being the linearity of (A 15), and the consequent linear 
dependence of $ on d (see (A 16)). In contrast, in the general -case when $ is 
determined by the nonlinear equation (A 7),  $ will depend nonlinearly on d,  and at 
resonance, it can be shown from (A 8) that d is proportional to a; as a+O, which is 
the characteristic scaling for resonance discussed in GS. This gives an alternative 
aspect on why the resonant theory described in this paper requires a different 
treatment from the general theory of GS. 
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